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Abstract

This paper proposes a regime-switching linear model with time-varying transition prob-
abilities, endogenous switching, and a nonparametric error distribution. The last two
qualities are achieved by letting the conditional mean of the normalized observation
errors be a potentially nonlinear function of the errors in the state equation. We
demonstrate that this specification permits a very flexible marginal distribution for
the observation error. A Markov Chain Monte Carlo algorithm for sampling from the
posterior distribution of parameters is developed. A simulation study demonstrates
that existing parametric switching models yield biased parameter estimates when the
data is generated by a model with nonlinear endogenous switching. We apply the
model to US quarterly output growth. The proposed model is shown to fit the data
better than parametric switching models.
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1 Introduction

Until the past decade, time series econometrics has focused primarily on parametric models.

This was true of both linear vector autoregressions (VARs) (Sims, 1980; Litterman, 1986;

Primiceri, 2005; Koop and Korobilis, 2013) and mixture models (Beaudry and Koop, 1993;

Sims and Zha, 2006; Uribe and Lopes, 2020). Early work in nonparametric time series models

focused on approximating nonlinear conditional mean functions in either univariate or small

multivariate processes (Auestad and Tjøstheim, 1990; Härdle et al., 1998; Hamilton, 2001). A

good deal of the more recent work has focused on Dirichlet process mixture models (DPMs).

DPMs have been used to model the error distribution of asset returns in stochastic volatility

models (Jensen and Maheu, 2010; Delatola and Griffin, 2011). Shahbaba (2009) used the

DPM to identify regimes in U.S. real GDP growth, allowing the number of regimes to be

selected by the model. Kalli and Griffin (2018) use a DPM to flexibly model VAR processes.

Nonparamteric VARs are an active area of research. Jeliazkov (2013) modeled the conditional

mean of each dependent variable as a sum of nonlinear univariate functions of explanatory

variables. Huber and Rossini (2021) model the conditional mean of a VAR process using

Bayesian additive regression trees. A consistent finding in the nonparametric VAR papers

is that relaxing the assumption of linearity leads to better forecasting performance.

One of the primary methodologies for introducing nonlinearity to time series economet-

rics has been the class of models known as Markov-switching models (MSMs). MSMs are an

extension of the hidden Markov model (Baum and Petrie, 1966) to the case of a continuously-

distributed dependent variable. They allow model parameters to switch between different

regimes. MSMs were introduced by Goldfeld and Quandt (1973) and popularized by Hamil-

ton (1989), who used a model of US Gross National Product growth as an alternative method

for dating business cycle turning points. Since then, models with Markov-switching have

been applied extensively to business cycles (Albert and Chib, 1993; Boldin, 1996; Ghysels

et al., 1997; Chauvet and Hamilton, 2006) as well as financial data (Vigfusson, 1997; Haas

et al. 2004; Guidolin and Timmermann, 2005). MSMs have expanded to include models
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with time-varying transition probabilities (TVTP) (Diebold et al. 1994; Filardo, 1994; Fi-

lardo and Gordon, 1998) as well as state space models (Kim, 1994; Chauvet, 1998; Kim and

Nelson, 1999). A more recent class of models allows for endogenous switching (Chib and

Dueker, 2004; Kim et al, 2008; Hwu et al., 2019; Kang and Kim, 2020). These models allows

the innovations in the equations governing regime transitions to be correlated with innova-

tions in the observation equation. Flexible error distributions are almost entirely missing in

the MSM literature. A Normal error distribution for the observation equation is assumed

in virtually all models. Two notable exceptions are Dueker (1997) and Hwu (2018). The

former modeled stock returns using a student’s t-distribution where the degrees of freedom

switch between different regimes. Hwu (2018) is the only MSM we have found where the

observation errors have a nonparametric distribution. He develops a switching mean model

where the error distribution is generated by a Dirichlet process. Hwu (2018) assumes that

switching is exogenous and transition probabilities are constant.

This paper proposes a regime-switching linear model with TVTP, endogenous switching,

and a nonparametric error distribution. Both of these qualities are achieved by letting the

conditional mean of the normalized observation errors be a potentially nonlinear function of

the errors in the state equation. Our model differs from Hwu (2018) both in the formulation

of the error distribution and robustness to endogeneity and TVTP.

The rest of the paper is organized as follows. Section 2 outlines the proposed model.

Section 3 describes how samples from the posterior distribution of model parameters are

simulated using Markov Chain Monte Carlo (MCMC) methods. Section 4 reports the results

of a simulation study. Section 5 describes model comparison using Bayes factors. Section 6

applies the model to US output growth data. Section 7 concludes.
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2 The Proposed Model

2.1 Model Setup

Consider the model

yt = x′
tβst + σstεt, (1)

st = 1{s∗t > 0}, (2)

s∗t = z′tδst−1 + ηt, (3)

εt ∼ N(g(ηt), 1), ηt ∼ N(0, 1). (4)

When g(ηt) is linear, g(ηt) = ρηt, this model is observationally equivalent to the en-

dogenous switching model of Kim et al. (2008). This can be seen by rewriting the model

as

yt = x′
tβst + σ̃st ε̃t, (5)

σ̃st = σst

√
1 + ρ2, (6)

ε̃t =
εt√
1 + ρ2

, (7)

ε̃t
ηt

 ∼ N(02,Ω), (8)
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Ω =

1 ρ̃

ρ̃ 1

 , (9)

ρ̃ =
ρ√

1 + ρ2
. (10)

The formula for ρ̃ guarantees that Ω is positive definite.

To estimate the model, g(ηt) is approximated nonparametrically. Let g(ηt) ≈ ĝ(ηt) =∑p
n=1 ρnbn(ηt) = ρ′bt, where {bn(ηt)} are basis functions. The basis functions are normalized

to equal 0 at the origin. Without this normalization, the intercept would not be jointly

identified with ĝ(ηt). This was a natural choice of normalization because it means there is no

impact from endogeneity when ηt = 0, just as in a parametric enodogenous switching model.

The two types of approximations that we considered were polynomial series and regression

splines. We only report results for regression splines because they consistently performed

comparably to or better than series regression. The polynomial series specification worked

well when g(ηt) was also polynomial, as would be expected, but less so for other types of

functions. Note that when a linear spline is used to approximate g(ηt), the joint distribution

of εt and ηt becomes a mixture of disjoint truncated Normal distributions. For any other

approximation, the joint distribution is nonstandard.

2.2 The Implications of g(ηt) for the Marginal Distribution of εt

The general form of g(ηt) allows for great flexibility in the marginal distribution of εt. Figure

1 contains plots of f(εt) under various conditional mean functions. It demonstrates that we

can induce skewness (1.a and 1.b), excess kurtosis (1.c), and bimodality (1.d) using simple

functional forms for g(ηt). The reader will observe that neither the unconditional mean nor

the unconditional variance are constant with respect to g(ηt). This is in contrast to the

various types of parametric endogenous switching models (Chib and Dueker, 2004; Kim et

al., 2008; Hwu et al., 2019). The existing literature models (εt, ηt) as a multivariate Normal
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random variable. This gives the marginal distribution of εt the same mean and variance

regardless of the correlation structure. In our specification, a greater correlation between εt

and ηt implies a greater marginal variance of εt. We considered marginal moment restrictions

on f(εt), namely E[εt] = 0 and V ar[εt] = 1. However, accommodating these restrictions is

difficult when using any approximation other than a local polynomial; numerical integration

is required to find the mean and variance of ĝ(ηt). In addition, direct sampling from the

full conditional posterior distribution of ρ would no longer be possible. Let Θ ≡ {β =

{βj}, σ = {σj}, δ = {δj}, ρ}. The dependence between the degree of endogeneity and the

marginal variance does not restrict the model overall because V ar[yt|xt, st,Θ] = σ2
stV ar[εt].

g(ηt) determines the degree and nature of the endogeneity, while σ controls the variance

of the error term. A possible way to weaken this relationship between endogeneity and

unconditional variance is to use the alternative model

yt = x′
tβst + εt, (11)

εt ∼ N(g(ηt), σ
2
st), ηt ∼ N(0, 1). (12)

However, this model offers less flexibility with regard to within-regime variance. Under the

alternative model, V ar[yt|xt, st,Θ] = V ar[g(ηt)] + σ2
st , as opposed to σ2

st(V ar[g(ηt)] + 1) in

the proposed model. Under the alternative model, we have different degrees of endogeneity

depending on the regime. This last feature may be a desirable property, which is why we

are currently researching the relative strengths of the alternative model.
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3 Posterior Sampling

3.1 Sampling ST and S∗
T

Let Yt ≡ (y1, . . . , yt)
′, St ≡ (s1, . . . , st)

′, S∗
t ≡ (s∗1, . . . , s

∗
t )

′. Regardless of the functional form

of g(ηt), the filtered regime probability can be calculated using

P (yt, st|st−1) =

∫
Bst|st−1

f(yt|st, ηt)f(ηt)dηt, (13)

P (st|Yt) ∝
∑
st−1

P (yt, st|st−1)P (st−1|Yt−1). (14)

Bst|st−1 is the region of integration where the values of ηt are consistent with st and st−1.

The constant of proportionality can be obtained by summation over st. This enables a

straightforward implementation of the algorithm of Chib (1996) for sampling the entire

history of regimes as a single block. Numerical integration is performed using the trapezoid

method and a fine grid of 500 points. Gauss Legendre quadrature would typically be a

superior choice to the trapezoid method as it allows for exact integration of finite order

polynomials and requires fewer function evaluations. The trapezoid method was chosen

because function evaluations can be saved and reused in sampling S∗
T .

ST and S∗
T are sampled as a single block by first sampling ST marginally of S∗

T and then

drawing from π(S∗
T |ST ,Θ, YT ). Conditional on st, s

∗
t can be drawn independently from the

posterior π(S∗
t |St,Θ, YT ) using a Metropolis Hastings step. We obtain near iid samples from

the full conditional posterior using a Griddy Gibbs proposal density (Tierney, 1994). The

posterior is first discretized by evaluating f(yt, S
∗
t |st,Θ) over an evenly-spaced grid. The

discrete probability measure is calculated as

P (xi) =
f(yt, xi|st,Θ)∑
k f(yt, xk|st,Θ)

(15)

.
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A candidate s∗t
′ is obtained by drawing xi from the discrete distribution and then adding a

continuous random variable:

s∗t
′ = xi + u, u ∼ N(0, σ2

u). (16)

The proposal density for s∗t
′ is then obtained by summation of (s∗t

′, xi) over the discrete

component:

q(s∗t
′) =

∑
i

P (xi)fN(s
∗
t
′ − xi, 0, σ

2
u). (17)

Proposed draws are then accepted with the usual MH acceptance probability.

We follow the common practice in Bayesian MSMs of rejecting samples where st is con-

stant over all periods. Accepting such draws can cause the sampler to get stuck in a particular

region of the parameter space and mix very slowly. Chib (1996) pointed out that this re-

striction is not necessary if all priors are proper. Another quirk of Bayesian MSMs of which

we must be mindful is label switching (Fruhwirth-Schnatter, 2001). This problem arises in

parameter simulation because an unconstrained model with N regimes produces a likelihood

with N ! modes. Failing to account for label switching can lead to nonsensical parameter

estimates if one simply uses the sample mean. One solution is to use identifying restrictions,

such as order restrictions on the intercepts or variances.

As η1 depends on s0, it must either be sampled or the dependence of η1 on s0 must be

integrated out. We elect to sample s0. Since there is no corresponding y0 for s0, it can be

sampled analytically from its full conditional distribution. Let η(s0) ≡ s∗1 − z′1δs0 . The full

conditional distribution of s0 can then be written as

P (s0|YT , S−0) ∝ f(y1|s1, η(s0))f(s∗1|s0)π(s0) (18)

The constant of proportionality is obtained by summing over all values of s0. π(s0), the

unconditional probability of s0, can be estimated in several ways. One common approach
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is to use the stationary distribution of the Markov chain (Chib, 1993; Chib, 1996). This

becomes more complicated when transition probabilities are non-constant. If the variables

in zt are stationary, stationary transition probabilities can approximated by plugging the

sample mean of zt into the equation for s∗t (Hwu et al., 2019). However, the approximation

is invalid when nonstationary variables like time trends are included. Another solution is to

let π(s0 = 1) be a parameter with prior distribution π(s0 = 1) ∼ B(p1, p2). One can then

sample from the full conditional distribution

π(s0 = 1)|YT , ST ∼ B(p1 + 1− s0, p2 + s0). (19)

We use this specification in all estimations that follow.

3.2 Sampling β and ρ

Once we condition on ST , S
∗
T , and δ, the model for YT becomes linear. We assume the

conjugate priors

β ∼ N(b0, B0), (20)

ρ ∼ N(r0, R0). (21)

We use the hierarchical prior

R0 = τ 2ρdiag(ν1, . . . , νp), (22)

τ 2ρ ∼ IG(αρ/2, γρ/2). (23)

τρ thus acts as a global smoothness parameter. It can be sampled from the full conditional

posterior
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τ 2ρ ∼ IG

(
αρ + p

2
,
γρ + ρ′(diag(ν1, . . . , νp))

−1ρ

2

)
. (24)

We set ν1, ν2, νp = 1. For other entries, we set νi = ki − ki−1. ki is the ith knot. Knots are

set such that they are evenly spaced across standard Normal quantiles for linear splines and

multiples of quantiles for higher order splines.

An equivalent way of writing (1) is

yt =

[
x′
t stx

′
t σstb

′
t

]
β0

β1 − β0

ρ

+ σstε
†
t = x′

stβ
∗ + σstε

†
t , (25)

ε†t ∼ N(0, 1). (26)

Let XST
≡ (xs1 , . . . , xsT )

′ and ΣST
≡ diag(σ2

s1
, . . . , σ2

sT
). The likelihood can then be written

as

f(YT |Θ, ST , S
∗
T ) = fN(YT |XST

β∗,ΣST
). (27)

We then arrive at the full conditional posterior for a classical linear model with heteroskedas-

ticity.

β∗|YT ,Θ−β∗ , ST , S
∗
T ∼ N(b̂∗, B̂∗), (28)

B̂∗ = (B∗
0
−1 +X ′

ST
Σ−1

ST
XST

)−1, (29)

b̂∗ = B̂∗(B∗
0
−1b∗0 +X ′

ST
Σ−1

ST
y), (30)
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b∗0 ≡ (b′0, r
′
0)

′, (31)

B∗
0 ≡

 B0 02k×p

0p×2k R0

 . (32)

When β is unrestricted, the entire vector β∗ can be sampled at once. When an identifying

restriction is placed on the intercepts, we will use the normalization β11 > β01, where βj1 is

the intercept for st = j. This leads to the full conditional posterior

β∗|YT ,Θ−β∗ , ST , S
∗
T ∼ TNβ∗

k+1>0
(b̂∗, B̂∗). (33)

Since only one dimension of β∗ is truncated, the marginal distribution of β∗
k+1 is

β∗
k+1|YT ,Θ−β∗ , ST , S

∗
T ∼ TN(0,∞)(β

∗
k+1|b̂∗k+1, B̂

∗
k+1,k+1). (34)

A well known result is that is the conditional distributions from a multivariate truncated

Normal distribution are also truncated Normal distributions. This fact, combined with the

lack of truncation for β∗
−k+1, tells us that f(β∗

−k+1|β∗
k+1, YT ,Θ−β∗ , ST , S

∗
T ) is a multivariate

Normal density. We can then sample from f(β∗|YT ,Θ−β∗ , ST , S
∗
T ) by first sampling from

f(β∗
k+1|YT ,Θ−β∗ , ST , S

∗
T ) and then from f(β∗

−k+1|β∗
k+1, YT ,Θ−β∗ , ST , S

∗
T ).

3.3 Sampling σ

Sampling σj is complicated by the nonstandard manner in which it enters the likelihood.

The full conditional distribution takes the form

f(σj|YT ,Θ−σj
, ST , S

∗
T ) ∝ π(σj)

∏
st=j

fN(yt|x′
tβj + σjρ

′bt, σ
2
j ). (35)
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If just σj entered the conditional mean parameter of the likelihood, we could use a Normal

prior for σj and sample it from a Normal full conditional posterior distribution. If just σ2
j

entered the conditional variance parameter of the likelihood, we could use an Inverse-Gamma

prior for σ2
j and sample it from an Inverse-Gamma full conditional posterior distribution.

However, the appearance of both σj in the conditional mean and σ2
j in the conditional

variance makes iid sampling from the full conditional posterior infeasible. Luckily, MH

sampling with a tailored proposal density is a simple task. The mode of the full conditional

distribution of σj has an analytical solution for several choices of prior distribution, including

Gamma, Inverse-Gamma, and Generalized inverse Gaussian distributions. One first samples

from q(σ′
j) = ftν (σ

′
j|σ̂j, cV̂j). σ̂j is the mode of the full conditional posterior. V̂j is the

negative inverse of the second derivative of the log posterior distribution evaluated at σ̂j. ν

and c are positive tuning parameters. σ′
j is then accepted with probability

α = min

{
1,

q(σj)π(σ
′
j)
∏

st=j fN(yt|x′
tβj + σ′

jρ
′bt, σ

′2
j )

q(σ′
j)π(σj)

∏
st=j fN(yt|x′

tβj + σjρ′bt, σ2
j )

}
. (36)

3.4 Sampling δ

δj enters the likelihood in a highly nonlinear fashion via the vector of basis functions. This

removes the option of analytical sampling that is present in exogenous and parametric en-

dogenous models. As well, there is no general closed form solution for the mode of the

full conditional posterior density. This leaves one with MH sampling and either a tailored

proposal distribution that is found numerically or a random walk proposal distribution. A

random walk proposal distribution is used in all estimations that follow. Let the prior dis-

tribution for π(δj) = fN(d0j, D0j). A candidate δ′j is draw from q(δ′j|δj) = fN(δ
′
j|δj, τ 2δj). Let

η̃t ≡ s∗t − z′tδ
′
j. δ

′
j is then accepted with probability

α = min

{
1,

π(δ′j)
∏

st−1=j
f(yt|st, η̃t)f(η̃t)

π(δj)
∏

st−1=j
f(yt|st, ηt)f(ηt)

}
. (37)
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Bayesian MSMs sometimes require a strong prior for the transition probabilities for the

model to be well-identified. In a model with 2 regimes and fixed transition probabilities, we

can select priors to match our expectations about the average duration of a regime (Chib,

1996; Filardo and Gordon, 1998).

4 Simulation Study

This section presents the results of a simulation study. We generated 500 datasets with

T = 500 observations and k = 3 variables: an intercept and two variables each drawn from

N(0T , IT ) distributions. A sample of 13,000 draws from the posterior distribution of pa-

rameters was obtained for each dataset. Given the earlier discussion of mixing, this may

seem like an insufficiently small sample size. However, we observed much faster mixing of

the posterior distribution for the simulated datasets than with the output growth dataset

used later. We used the identifying restriction β01 < β11. In each instance, the first 3,000

draws were discarded as burn-in. For comparison, we also estimated models with paramet-

ric endogenous switching and exogenous switching. All datasets were simulated using the

function g(ηt) = η2t . Table 1 reports the parameter estimation errors for all three models.

The estimation error of a parameter is taken to be the parameter estimate minus the true

parameter value. The results demonstrate that the existing models can produce biased esti-

mates when g(ηt) is nonlinear. A surprising result is that the exogenous model outperforms

the parametric endogenous model. The large estimation errors of the parametric endogenous

model are partly due to bimodality in the empirical error distribution. A natural cubic spline

with 9 knots was used to approximate g(ηt). Figure 2 shows that g(ηt) is well-approximated

by posterior estimates.
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5 Model Comparison

The different models considered in this paper are compared using Bayes factors (Kass and

Raftery, 1995). Since the sampler uses a mix of Gibbs and MH steps, marginal likelihood

calculation is done using methods form Chib (1995), Chib (1998), and Chib and Jeliazkov

(2001). Bayes factors have also been employed to select the number of regimes in both

classical MSMs (Koop and Potter, 1999) and in models with endogenous switching (Kang,

2014). As in Chib (1995), the formula for the marginal likelihood is obtained from a simple

application of Bayes’ Formula:

f(YT |Mi) =
f(YT |Θ∗,Mi)π(Θ

∗|Mi)

f(Θ∗|YT ,Mi)
. (38)

Θ∗ is taken to be the posterior mean of Θ. The likelihood f(YT |Θ∗,Mi) is calculated using

a modified version of the forward filtering algorithm of Hamilton (1989). π(s0 = 1) can

be integrated out of the likelihood by replacing it with its prior mean. f(Θ∗|YT ,Mi) is

rewritten as f(β∗|σ∗, δ∗, YT ,Mi)f(σ
∗|δ∗, YT ,Mi)f(δ

∗|YT ,Mi). All ordinates are estimated

via simulation as in Chib and Jeliazkov (2001).

6 Application to GDP Data

We applied the model of (1) - (4) to data on quarterly real GDP growth. The dataset runs

from 1947:Q2 to 2019:Q4. The most recent recession was omitted because the magnitudes

of the shifts are much greater than in the rest of the sample. Estimations that included

this period did not perform well at identifying previous recessions. They tended to classify

every period prior to 2020:Q1 as an expansion. Let the dependent variable be defined as

yt ≡ ln(GDPt)− ln(GDPt−1). We estimated a 2-state switching means model with constant

scaling factor σ:
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yt = βst + σεt. (39)

We experimented with different autoregressive specifications, allowing for up to 4 lags of yt

and switching scaling factors. However, the simple switching means model with constant

scaling factor performed the best in identifying latent states that correspond to business

cycles. g(ηt) is approximated using a natural cubic spline with 9 knots. Identification is

achieved through the restriction β0 < β1. We also estimated a parametric endogenous model

and an exogenous model. We used the prior π(σ) = fTN(0,∞)
(σ|0, 1) and the hyperpriors

b0 = (−.1815, .4196, 0′p)
′, B0 = .25I2, αρ = 1, γρ = .1, d0 = (−.6, 1.66)′, D0 = I2, p1, p2 = 0.

We set p = 1 and p = 0 for the parametric endogenous and exogenous models, respectively. b0

was chosen to match the average growth rates during recessions and expansions as classified

by the National Bureau of Economic Research (NBER). d0 was chosen to match the average

durations of recessions and expansions. Each sample of parameters consisted of 300,000

draws after burn-in samples were discarded.

As can be seen in Figure 4, the posterior estimate of ĝ(ηt) is rather nonlinear. To better

understand how nonlinearity in the conditional mean of εt affects its marginal distribution,

we estimated the densities f(ετ |YT ) and {f(ετ |YT , sτ , sτ−1)}. The subscript τ is used instead

of t to stress that these distributions are not conditioned on any time period in the sample.

We would ideally remove the dependence of ετ on ρ and δ through direct integration:

f(ετ |YT ) =

∫
f(ετ |ητ , YT , ρ)f(ητ )f(ρ|YT )dητdρ, (40)

f(ετ |YT , sτ , sτ−1) =

∫
f(ετ |ητ , YT , ρ)f(ητ |YT , sτ , sτ−1, δ)f(ρ, δ|YT )dητdρdδ. (41)

The intractability of these integrals forces us to instead use a mixture of numerical and monte

carlo integration. At each iteration m of the MCMC sampler, we evaluate the integrals∫
f(ετ |ητ , YT , ρ

(m))f(ητ )dητ and
∫
f(ετ |ητ , YT , ρ

(m))f(ητ |YT , sτ , sτ−1, δ
(m))dητ using numeri-
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cal methods. The reader should note that f(ητ ) = fN(ητ |0, 1) and f(ητ |YT , sτ , sτ−1, δ
(m))

is a truncated standard Normal density with region of truncation B(m)
st|st−1

. The rest of the

integration is done by averaging over MCMC draws. We use the approximations

f(ετ |YT ) ≈ M−1

M∑
m=1

∫
f(ετ |ητ , YT , ρ

(m))f(ητ )dητ , (42)

f(ετ |YT , sτ , sτ−1) ≈ M−1

M∑
m=1

∫
f(ετ |ητ , YT , ρ

(m))f(ητ |YT , sτ , sτ−1, δ
(m))dητ . (43)

M is the number of remaining MCMC draws after burn-in samples are discarded. Approxi-

mations f̂(ετ |YT ) and f̂(ετ |YT , sτ , sτ−1) are plotted in Figures 5 and 6, respectively. f̂(ετ |YT )

is skewed to the right, making extreme positive values more likely than in a Gaussian dis-

tribution. We observe interesting deviations from f̂(ετ |YT ) when we condition on past and

current regimes. f̂(ετ |YT , sτ = 0, sτ−1 = 0) is postively skewed and centered around a posi-

tive number, meaning we are more likely to see positive deviations from the average growth

rate during a recession. The distribution of errors in f̂(ετ |YT , sτ = 0, sτ−1 = 1) is more Gaus-

sian, but there is more mass in the positive region of ετ . This implies that average growth is

higher in the first period of a recession. We can interpret this as a transitional period between

high and low growth. We also see a large amount of probability mass in the positive region

of ετ for f̂(ετ |YT , sτ = 0, sτ−1 = 1). This corresponds to a high growth recovery in which

average growth is higher in the first quarter following a recession. f̂(ετ |YT , sτ = 1, sτ−1 = 1)

is the density that most closely resembles a Gaussian distribution centered at 0. This results

from the quasilinear shape of Ê[ĝ(ηt)|YT ] in the region [-1,.5].

Parameter estimates are displayed in Table 2. Estimates for β are lower for the non-

paramteric model than the other two. This is likely caused by the positive skew in f(ετ |YT ).

The posterior estimate for σ is also lowest in the nonparamteric model, indicating that there

is less residual variation in the data when we allow εt to have a nonlinear conditional mean

function. The estimate for δ0 is highest in the nonparametric model, corresponding to less
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persistent recessions. There does not appear to be a large variation in the persistence of

expansions predicted by the three models.

Figure 3 shows smoothed recession probabilities from the nonparametric model along with

NBER recession dates. We observes a spike in recession probabilities during every recession.

The one false positive occurs in the first quarter of the sample. This is a reasonable error

for the model to produce because real output growth was negative in this period.

The natural logarithm of the Bayes factors for choosing the Nonparametric model over the

exogenous model and the parametric endogenous model are 5.64 and 4.03, respectively. Using

an uninformative uniform prior for model probabilities, this makes the posterior probability

of the nonparametric model 281.46 times that of the exogenous model and 56.26 times that

of the parametric endogenous model.

7 Conclusion

We developed a MSM with nonparametric endogenous switching. The nonparametric model

offers substantial flexibility with regard to the marginal distribution of observation errors.

A simulation study demonstrated that exisiting parametric models can produce biased re-

sults when the true data generating process entails nonlinear endogenous switching. The

model was applied to data on US real GDP growth. The estimated model had a significantly

higher Bayes factor than estimates for parametric endogenous and exogenous models. The

nonparametric model is also able to identify all recessions as calculated by the NBER. Es-

timated marginal error distributions indicated the innovations in the observation equation

are non-Gaussian and generally skewed to the right.

There are many areas in which this paper could be extended. One obvious application is

to financial data. A flexible error distribution is called for in a landscape where fat tails and

skewness are expected. Other directions for further research are extensions to multivariate

data and more than 2 regimes.
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Figure 1: Marginal Distributions of εt

(a) g(ηt) = η2t , (b) g(ηt) = −η2t , (c) g(ηt) = 10η3t , (d) g(ηt) = 10η
1/3
t (the real root).
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Table 1: Average Estimation Errors

Nonparametric Endogenous Model Parametric Endogenous Model Exogenous Model

β01 0.0316 -1.3478 0.2404
(0.0512) (1.4932) (0.0267)

β11 0.1071 2.0731 0.5028
(0.3088) (1.5123) (0.0634)

β02 0.0033 1.3325 -0.0035
(0.0869) (1.2015) (0.0281)

β12 -0.0035 -1.3373 -0.0185
(0.0975) (1.1851) (0.0570)

β03 -0.0076 -1.3320 -0.0007
(0.0867) (1.1978) (0.0271)

β13 0.0066 1.3262 0.0225
(0.0969) (1.1751) (0.0552)

σ0 0.0194 0.7062 0.3222
(0.0373) (0.5127) (0.0673)

σ1 0.0089 0.9562 0.1888
(0.0359) (0.5127) (0.0397)

δ01 0.0142 0.7404 0.0211
(0.1075) (0.6413) (0.1239)

δ11 -0.0094 -0.6912 -0.0128
(0.1074) (0.6643) (0.1252)

The values presented are the estimation errors (parameter estimate - true value) for all parameters in θ.
Standard deviations are listed below estimation errors in parentheses.
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Figure 2: The Distribution of ĝ(ηt), Simulation Study
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Table 2: Posterior Estimates for Output data

Nonparametric Parametric
Endogenous Model Endogenous Model Exogenous Model

β0 -0.4089 -0.2368 -0.0049
(0.1298) (0.2593) (0.2080)

β1 0.3702 0.4500 0.5357
(0.0642) (0.1317) (0.1624)

σ 0.2430 0.3475 0.3497
(0.0362) (0.0186) (0.0178)

δ0 -0.3880 -0.5434 -0.90901
(0.2429) (0.5533) (0.5449)

δ1 1.3523 1.6845 1.2814
(0.2625) (0.4062) (0.4811)

ln(f(YT |Θ∗,Mi)) -123.4621 -137.8244 -140.4360
ln(f(YT |Mi)) -139.3520 -143.3834 -144.9914

Standard deviations are listed below parameter estimates in parentheses.

Figure 3: Smoothed Recession Probabilities
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Figure 4: The Distribution of ĝ(ηt), GDP Model
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Figure 5: f̂(ετ |YT )
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Figure 6: f̂(ετ |YT , sτ , sτ−1)

27


